久久久无码人妻精品无码_6080YYY午夜理论片中无码_性无码专区_无码人妻品一区二区三区精99

USEUROPEAFRICAASIA 中文雙語Fran?ais
China
Home / China / World

Machine has 'ability to learn' like a human

By Agence France-Presse in Washington | China Daily | Updated: 2015-12-12 08:14

Scientists have invented a machine that imitates the way the human brain learns information, a step forward for artificial intelligence, researchers reported on Thursday.

The system described in the journal Science is a computer model "that captures humans' unique ability to learn new concepts from a single example," the study said.

"Though the model is only capable of learning handwritten characters from alphabets, the approach underlying it could be broadened to have applications for other symbol-based systems, like gestures, dance moves, and the words of spoken and signed languages."

Joshua Tenenbaum, a professor at the Massachusetts Institute for Technology, said he wanted to build a machine that could mimic the mental abilities of young children.

"Before they get to kindergarten, children learn to recognize new concepts from just a single example, and can even imagine new examples they haven't seen," he said.

"We are still far from building machines as smart as a human child, but this is the first time we have had a machine able to learn and use a large class of real-world concepts - even simple visual concepts such as handwritten characters - in ways that are hard to tell apart from humans."

The system is a called a Bayesian Program Learning framework, where concepts are represented as simple computer programs.

Researchers showed that the model could use "knowledge from previous concepts to speed learning on new concepts," such as building on knowledge of the Latin alphabet to learn letters in the Greek alphabet.

"The authors applied their model to over 1,600 types of handwritten characters in 50 of the world's writing systems, including Sanskrit, Tibetan, Gujarati, Glagolitic - and even invented characters such as those from the television series Futurama," said the study.

Since humans require very little data to learn a new concept, the research could lead to new advances in artificial intelligence, the study authors said.

"It has been very difficult to build machines that require as little data as humans when learning a new concept," said Ruslan Salakhutdinov, an assistant professor of computer science at the University of Toronto.

 

Editor's picks
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
久久久无码人妻精品无码_6080YYY午夜理论片中无码_性无码专区_无码人妻品一区二区三区精99

    中文字幕av不卡| 一区二区三区四区在线播放| 福利电影一区二区| 亚洲欧洲美洲综合色网| 一本一道久久a久久精品| 亚洲va国产va欧美va观看| 日韩一级完整毛片| 国产激情视频一区二区三区欧美| 国产精品国产三级国产有无不卡 | 裸体健美xxxx欧美裸体表演| 久久综合九色综合欧美98| 成人18视频在线播放| 玉米视频成人免费看| 欧美一区二区三区在线看| 国产综合久久久久久鬼色| 1024国产精品| 欧美精品xxxxbbbb| 国产精品资源网站| 亚洲免费观看高清在线观看| 欧美精品自拍偷拍动漫精品| 国产精品亚洲人在线观看| 亚洲蜜桃精久久久久久久| 日韩一区二区三区四区| 成人午夜精品在线| 亚洲 欧美综合在线网络| 久久久久久久久久久电影| 99久久精品免费看国产免费软件| 五月天激情综合网| 欧美国产日韩精品免费观看| 欧美色区777第一页| 韩国精品一区二区| 一区二区三区中文字幕| 欧美mv日韩mv国产网站| 91麻豆产精品久久久久久| 老司机免费视频一区二区| 国产精品超碰97尤物18| 欧美一区二区高清| 色综合天天做天天爱| 精品影视av免费| 亚洲最新在线观看| 国产欧美一区二区三区在线看蜜臀| 欧美日韩中文另类| 丁香激情综合五月| 日本午夜一区二区| 亚洲天堂2014| 2022国产精品视频| 欧美巨大另类极品videosbest| 风流少妇一区二区| 麻豆精品蜜桃视频网站| 亚洲永久免费视频| 国产日韩亚洲欧美综合| 日韩欧美综合一区| 91久久国产最好的精华液| 国产麻豆视频一区二区| 婷婷综合另类小说色区| 亚洲男人的天堂在线aⅴ视频 | 国产精品国产成人国产三级| 日韩精品一区二区在线| 欧洲日韩一区二区三区| av网站一区二区三区| 久久99精品久久久久久国产越南| 亚洲国产精品尤物yw在线观看| 国产麻豆成人传媒免费观看| 亚洲国产一区视频| 亚洲色图在线视频| 国产午夜精品久久久久久免费视 | 国产精品午夜在线| 欧美精品一区二区三区在线播放 | 欧美唯美清纯偷拍| av电影在线观看一区| 国产成人精品三级麻豆| 蜜桃视频免费观看一区| 午夜视黄欧洲亚洲| 亚洲国产成人va在线观看天堂| 国产精品国产a| 国产色产综合色产在线视频 | 国产精品美女久久久久高潮| 精品久久99ma| 日韩限制级电影在线观看| 精品视频在线免费观看| 在线一区二区观看| 91视频在线看| 91在线你懂得| 99综合电影在线视频| 国产成人h网站| 国产精品一色哟哟哟| 久久99国内精品| 六月婷婷色综合| 九色综合狠狠综合久久| 久久精品国产精品亚洲红杏| 另类小说视频一区二区| 麻豆精品久久久| 另类小说欧美激情| 久久99国产精品尤物| 精品写真视频在线观看| 美女精品一区二区| 久久福利资源站| 另类小说欧美激情| 精品一区二区三区视频| 国内成人精品2018免费看| 久久精品72免费观看| 精品系列免费在线观看| 国产麻豆精品一区二区| 国产成人免费视频网站| 成人久久视频在线观看| 不卡电影一区二区三区| 91亚洲午夜精品久久久久久| 色婷婷精品大在线视频| 欧美性猛片xxxx免费看久爱| 欧美日本在线视频| 91精品国产综合久久久久久漫画| 日韩一级欧美一级| 精品国产第一区二区三区观看体验| 久久午夜色播影院免费高清 | 一区二区三区免费| 亚洲午夜久久久| 男人的j进女人的j一区| 另类专区欧美蜜桃臀第一页| 国产乱人伦精品一区二区在线观看| 国产高清成人在线| 色综合色综合色综合色综合色综合| 欧洲在线/亚洲| 91精品福利在线一区二区三区 | 日日欢夜夜爽一区| 激情综合五月婷婷| 成人黄色在线网站| 91久久一区二区| 欧美电影在线免费观看| 欧美tickling挠脚心丨vk| 中文字幕不卡在线播放| 亚洲精品视频免费看| 天堂午夜影视日韩欧美一区二区| 欧美日韩精品一二三区| 精品国产一二三区| 亚洲欧美在线aaa| 亚洲国产精品一区二区尤物区| 日韩黄色免费电影| 日韩精品色哟哟| 日本欧美韩国一区三区| 国产成人免费网站| 色综合久久天天综合网| 欧美在线不卡一区| 91精品一区二区三区久久久久久 | 亚洲午夜激情网页| 日产国产高清一区二区三区| 成人一区二区三区在线观看| 91福利精品视频| 日韩一级二级三级| 久久精品一区二区三区av| 一区二区三区日韩| 日本不卡一二三| 国产成人综合网| 色欧美日韩亚洲| 久久综合久久综合亚洲| 国产精品短视频| 视频一区在线播放| 激情综合网最新| 91理论电影在线观看| 日韩三级在线免费观看| 国产精品网站在线观看| 亚洲午夜日本在线观看| 国产一区在线视频| 色94色欧美sute亚洲线路一ni| 91麻豆精品91久久久久久清纯| 国产精品天干天干在线综合| 亚洲第一综合色| 国产美女精品一区二区三区| 色婷婷综合视频在线观看| 欧美精品一区二区三区高清aⅴ| 国产精品第四页| 免费视频一区二区| aaa欧美色吧激情视频| 91精品国产丝袜白色高跟鞋| 日本一区二区电影| 天天色 色综合| 成人福利视频在线| 欧美一区午夜精品| 亚洲欧洲av在线| 久久国内精品自在自线400部| 在线精品亚洲一区二区不卡| 2023国产一二三区日本精品2022| 一区二区久久久| 国产.欧美.日韩| 欧美大片在线观看一区| 一区二区三区在线免费视频| 国产精品888| 51精品视频一区二区三区| 国产欧美精品日韩区二区麻豆天美| 亚洲高清久久久| 成人午夜伦理影院| 亚洲精品一区二区三区福利| 亚洲一区二区在线观看视频| 国产福利一区二区| 91国产丝袜在线播放| 中文字幕av一区二区三区免费看 | 自拍偷自拍亚洲精品播放| 蜜臀a∨国产成人精品| 91久久精品午夜一区二区| 日本一区二区免费在线观看视频| 日本亚洲三级在线|